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Introduction to scientific computing

• Scientific computing is a subject of applying mathematical tools to the

design of efficient algorithms on computers

• Difference with computer science: emphasizing the role of

mathematics to ensure accuracy, stability, and efficiency of numerical

algorithms.
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Example 1: Fast Fourier transform.

• The goal of the algorithm is very simple.

We are given a uniform mesh over [0, 2π]:

0 = x0 < x1 < x2 < · · · < xN = 2π

where xj+1 − xj = h = 2π
N

, and we assume for simplicity N is odd.
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There is a one to one correspondence between the discrete Fourier

coefficients

ak : |k| ≤
N − 1

2

and the values of the function fN(x)

fN(x) =
∑

|k|≤(N−1)/2

ake
ikx

at the grid points xj :

fN(xj) =
∑

|k|≤(N−1)/2

ake
ikxj , j = 1, 2, · · · , N.
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• For example, if we are given

ak : |k| ≤
N − 1

2

and we would like to compute fN(xj), we could simply perform the

summation

fN(xj) =
∑

|k|≤(N−1)/2

ake
ikxj ,

for each j = 1, 2, · · · , N . Clearly, the cost (number of multiplications,

divisions, summations) is O(N) for each j, hence the total cost is

O(N 2) for all j = 1, 2, · · · , N .
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• When N is very large (e.g. N = 5000 or more for signal analysis and

image processing problems), there are two problems:

– The computational cost to perform the Fourier transform is very

large.

– The accumulation of round-off errors is significant, so the

computed results are not very accurate.
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• The fast Fourier transform (FFT) is a mathematical reformulation of

fN(xj) =
∑

|k|≤(N−1)/2

ake
ikxj ,

by regrouping terms which can be repeatedly used, so that one can

obtain the values of fN(xj) for all j = 1, 2, · · · , N in O(N log N)

cost. FFT is more efficient if N is a product of small primes, e.g. when

N = 2n. For modest N , even for N as large as 5000, log N is very

small. The savings in computational cost is significant — a job which

needs thousands of minutes can now be completed in a few minutes.

Also, the round-off error accumulation is significantly reduced.
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• We emphasize that FFT and the straightforward computation give

mathematically identical results. There is no approximation involved

here. Mathematics helps us in this case to get the same result much

faster and more accurately.

Reference: J.W. Cooley and J.W. Tukey, An algorithm for the machine

calculation of complex Fourier series, Mathematics of Computation, 19,

1965, 297–301.
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Example 2: Fast multipole method.

This more recently developed fast method has the same spirit as the fast

Fourier transform.

• The fast multipole method aims at certain types of dense systems of

interactions.

• For example, we may have N particles located at xj ,

j = 1, 2, · · · , N in R3. Each pair of particles would interact with

each other, the interaction strength could be inversely proportional to

their distance |xi − xj| or its square (e.g. gravity).
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• Thus, to compute the movement of each particle, we would need to

sum up the interaction of this particle with every other particle,

resulting in O(N) calculation. The total cost of computing the

movement of all N particles is thus O(N 2), which is very large.

• This time, the structure of the problem is less apparent than that of

Fourier sum to group terms together to save computational cost.

However, with a clever choice of grouping techniques, Greengard and

Rokhlin were able to obtain the fast multipole method, which computes

an approximation to the desired precision and achieves a

computational cost of O(N log N).
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• This technique has now been widely used in solving various integral

equations and interaction systems. The discovery of the fast multipole

method led to the AMS 2001 Leroy P. Steele Prize for a Seminal

Contribution to Research shared by Greengard and Rokhlin.

Reference: L. Greengard and V. Rokhlin, A fast algorithm for particle

simulations, Journal of Computational Physics, 73, 1987, 325–348.
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Solution of large linear systems

In principle, we know how to solve a linear system

Ax = b

by, e.g. the Cramer’s rule. However, a direct implementation of Cramer’s

rule involves an operation count on the order of O(n!) when A is an

n × n matrix. This is of course not feasible for large n (e.g. n = 1 million

which corresponds to a discretization of three dimensional PDE on a mesh

of 100 × 100 × 100 grid points).
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Fortunately, we then have the method of Gauss elimination. For example,

we look at the linear system

2x1 + x2 = 4

x1 − x2 = −1

If we multiply the second equation by 2, and subtract it from the first

equation, the system becomes

2x1 + x2 = 4

3x2 = 6

The system is now upper-triangular, which is easy to solve by back

substitution, to obtain the solution

x1 = 1, x2 = 2
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It is easy to verify that this procedure has a cost of at most O(n3) to reach

the solution (smaller for banded matrices), which is much lower than the

O(n!) cost of applying the Cramer’s rule.

We can also show that, with suitable “pivoting”, i.e. suitable interchanges

of rows and columns of A (which do not change the solution), Gauss

elimination can always be performed in a stable fashion whenever A is

non-singular.

However, in many situations, even O(n3) is an excessive cost. Storage

might also be a problem to store the full matrix A, when often there are

many zeros in its entries.
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Therefore, people have been studying various iterative methods to solve

Ax = b. Iterative methods are particularly attractive for sparse but not

narrowly banded matrices A, for which Gauss elimination is quite costly

but Ax does not involve much cost to obtain for any given x.

The idea is to introduce iterative matrices Bn and vector cn, and define

the iteration as

xn+1 = Bnxn + cn.

We would like to require that, when xn → x for n → ∞, x is the solution

of Ax = b. We would require Bn and cn to be easy (cost effective) to

compute, and we would require Bn to have similar sparseness as A so

that the evaluation of Bnxn is cost effective.
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Of course, it would make sense to use an iterative method only if the

convergence is very fast, so that not that many iterations are needed to

reach a solution very close to x.

In simpler situations, Bn = B and cn = c which do not depend on n.

Over the years, there have been a lot of research on designing efficient

iterative methods for solving linear systems.
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When A has certain special properties, for example if A is symmetric and

positive definite, iterative methods which can converge in O(1) number of

iterations (independent of n) can be designed (e.g. multigrid methods).

Thus, for sparse matrices with a fixed number of entries per row

(independent of n) the solution x can be obtained with O(n) cost, which

is clearly optimal.

The design and analysis of multigrid methods by Achi Brandt has been

recognized both by the applied mathematics community and the computer

science community with the Second SIAM/ACM Prize in Computational

Science and Engineering (SIAM/ACM CSE Prize) in 2005.
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When A is not symmetric and positive definite, there are various Krylov

subspace iterative methods (based on the subspaces spanned by b, Ab,

A2b, etc.). However, iterative methods which can guarantee fast

convergence are still lacking. This is an active research area.
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More examples

We can clearly see the role of mathematics in scientific computing by

looking at the work of a few SIAM/ACM CSE Prize recipients:

• The First SIAM/ACM CSE Prize was awarded to John B. Bell and

Phillip Colella in 2003, for the development of mathematical methods

and computer science tools for science and engineering.

• The Third SIAM/ACM CSE Prize was awarded to Chi-Wang Shu in

2007, for the development of numerical methods that have had a great

impact on scientific computing.

• The Fourth SIAM/ACM CSE Prize was awarded to Cleve Moler in

2009, for his individual research in numerical analysis and the efficacy

of his invention MATLAB.
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• The fifth SIAM/ACM CSE Prize was awarded to J. Tinsley Oden in

2011, for his impact on the development of finite element methods.

• The sixth SIAM/ACM CSE Prize was awarded to Linda R. Petzold in

2013, for her contribution to numerical methods for ordinary differential

equations and dynamical systems.

• The seventh SIAM/ACM CSE Prize was awarded to the PETSc Core

Development Group (Satish Balay, Jed Brown, William Gropp,

Matthew Knepley, Lois Curfman McInnes, Barry Smith, and Hong

Zhang) in 2015, for their contribution to the development of Portable,

Extensible Toolkit for Scientific Computation.

• The eighth SIAM/ACM CSE Prize was awarded to Thomas J. R.

Hughes in 2017, for his pioneering work on finite element methods for

partial differential equations.
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High order numerical methods for hyperbolic equations

Hyperbolic conservation laws are PDEs of the form

ut + f(u)x + g(u)y + h(u)z = 0 (1)

where ξ1f
′(u) + ξ2g

′(u) + ξ3h
′(u) is diagonalizable with real

eigenvalues for any real ξ = (ξ1, ξ2, ξ3). The equation may have

discontinuous solutions (shocks, contact discontinuities, etc.) even if the

initial and boundary conditions are smooth.
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Selected list of applications:

• Traffic flows

• Computational fluid dynamics, especially high speed flows

• Electro-magnetic waves, aeroacoustics

• Astrophysics

• Semiconductor device simulations

• Certain problems in computational biology

• · · ·
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For smooth solutions, high order accurate methods are very efficient. For

example, for a periodic function f(x), we assume the Fourier coefficients

f̂(k) =
1

2

∫ 1

−1

f(x)e−ikπxdx

are given for −N ≤ k ≤ N .

Division of Applied Mathematics, Brown University



MATHEMATICS IN SCIENTIFIC COMPUTING

The partial Fourier sum is defined by

fN(x) =
N∑

k=−N

f̂(k)eikπx

and it converges very fast to f(x):

max
−1≤x≤1

|f(x) − fN(x)| ≤ Ce−αN

with constants C and α > 0 independent of N , provided the periodic

function f(x) is analytic.
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If the function is less smooth we still have faster than algebraic

convergence

‖f − fN‖ ≤
C

Np
‖f‖Hp

as long as f has its p-derivative in L2.

Similar results exist for non-periodic problems using polynomial basis

functions (Chebyshev and Legendre spectral methods).
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If f(x) is less smooth, the convergence rate degenerates. In particular, if

f(x) is discontinuous, then there is no convergence in the maximum

norm:

• Away from the shock the convergence rate is O( 1
N

);

• Near the shock there are O(1) oscillations.

This is called the Gibbs phenomenon.
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Figure 1: The function f(x) = x (solid line); the Fourier partial sum fN(x)

with N = 4 (short dashed line) and N = 8 (dotted line), and the approx-

imation through the Gegenbauer procedure using m = λ = N/4 for

N = 4 (long dashed line).
Division of Applied Mathematics, Brown University



MATHEMATICS IN SCIENTIFIC COMPUTING

In the past 30 years, good progress has been made in designing high

order numerical methods for solving hyperbolic equations even when the

solutions are not smooth, or even discontinuous. These methods include

(but are not restricted to):

• Spectral and other high order methods with suitable filters or

post-processing;

• Weighted essentially non-oscillatory (WENO) finite difference and

finite volume schemes;

• Discontinuous Galerkin (DG) finite element methods.
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The state of the art high order, “high resolution” schemes, especially the

WENO schemes and DG schemes (with suitable limiters), can achieve the

following performance:

• high order accuracy convergence in smooth regions of the solution;

• sharp and essentially non-oscillatory shock transitions.
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Additional Example 1: Simulation of astrophysical jet flows

To simulate the gas flows and shock wave patterns which are revealed by

the Hubble Space Telescope images, one can implement theoretical

models in a gas dynamics simulator. The two-dimensional model without

radiative cooling is governed by the compressible Euler equations. The

velocity of the gas flow is extremely high, and the Mach number could be

hundreds or thousands.
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An important property of the physical model of compressible Euler

equations is that positivity-preserving property for density and pressure.

That is, for the exact solution of the partial differential equations, if the

initial condition has positive density and pressure, then the solution at later

time also has positive density and pressure. The partial differential

equations are ill-posed with negative density or pressure. That is, if either

the density or pressure becomes negative, a small perturbation will be

amplified without bound for later time, leading to the failure of numerical

algorithms.
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A big challenge for the computation of this astrophysical jet flow is, even

for a state-of-the-art high order schemes, negative pressure could appear

since the internal energy is very small compared to the huge kinetic energy

(Ha, Gardner, Gelb and Shu, Journal of Scientific Computing 2005). One

would then need to add additional numerical viscosity, hence lower the

computational accuracy, in order to stablize the numerical algorithm.

In (Zhang and Shu, Journal of Computational Physics 2010),

mathematical analysis leads to the design of suitable weak limiter, which

maintains the originally designed high order accuracy of the discontinuous

Galerkin methods, yet can guarantee the numerical solution to retain

positive density and pressure.
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First, we compute a Mach 80 (i.e. the Mach number of the jet inflow is 80

with respect to the soundspeed in the jet gas) problem without the

radiative cooling.
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Figure 2: Simulation of Mach 80 jet without radiative cooling. Scales are

logarithmic. Density.
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Second, to demonstrate the robustness of our method, we compute a

Mach 2000 problem. The domain is [0, 1] × [0, 0.5]. The width of the jet

is 0.1. The terminal time is 0.001. The speed of the jet is 800, which is

around Mach 2100 with respect to the soundspeed in the jet gas.
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Figure 3: Simulation of Mach 2000 jet without radiative cooling. Scales are

logarithmic. Density.
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Lastly, we compute a Mach 80 (i.e. the Mach number of the jet inflow is 80

with respect to the soundspeed in the jet gas) problem with the radiative

cooling to test the positivity-preserving property with the radiative cooling

source term.
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Figure 4: Simulation of Mach 80 jet with radiative cooling. The third or-

der positivity-preserving RKDG scheme with the TVB limiter. Scales are

logarithmic. Density.
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Additional Example 2: Simulation of a multi-class LWR traffic flow model

The mathematical model governing traffic flows with multiple vehicle types

is a system of nonlinear hyperbolic partial differential equations, which

admit solutions with discontinuities.

In Zhang, Shu, Wong and Wong, Journal of Computational Physics 2003,

numerical simulation is performed for this traffic flow model. If one uses a

first order accurate numerical algorithm with 6400 grid points (a very

refined mesh in engineering computation), one obtain the following

solution (which looks like the true solution, as it seems to be the

numerically converged solution when one uses 400, 800, 1600, 3200 and

6400 grid points). A high order weighted essentially non-oscillatory

(WENO) scheme using 100 grid points also gives similar results.
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Figure 5: Density versus distance at t = 0.015 hour.
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However, if one uses more grid points using the mathematically more

accurate WENO schemes, one observes “staircase” solution structure

which has been completely missed by the less accurate first order scheme

with even 6400 points:
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Figure 6: Density versus distance at t = 0.015 hour.
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Mathematically, the less accurate first order scheme should still converge

to the correct solution with further mesh refinement, which is indeed the

case when the computation is performed on extremely refined meshes

reaching 25600 grid points:
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Figure 7: Density versus distance at t = 0.015 hour.
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Finally, we can see that the solution of the high order WENO scheme with

400 grid points achieves comparable resolution as the first order scheme

with 25600 grid points. Of course the high order scheme spends much

less computational time:
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Figure 8: Density versus distance at t = 0.015 hour.
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Concluding remarks

Mathematics can play an essential role in scientific computing:

• It can help the design of efficient algorithms.

• It can help to verify the reliability (stability and accuracy) of numerical

algorithms.

• It has played a major role in the recent exploding development of

machine learning and artificial intelligence.
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